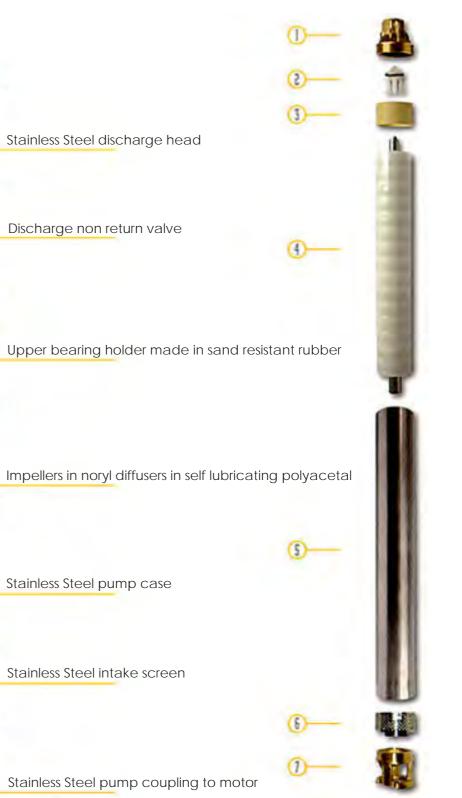
GPS-T3, FP4, pump series and FRK motors

Bore pumps, and motors Diameter - 72mm / 3" to 100mm / 4" 50Hz

GLOBAL PUMP SOLUTIONS

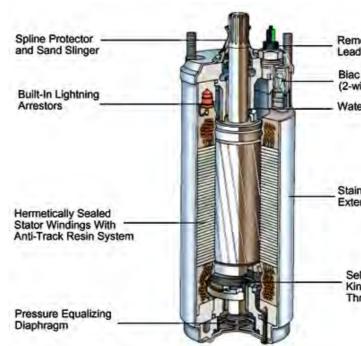
Hydraulic Information GPS-T3 3 inch bore pump series

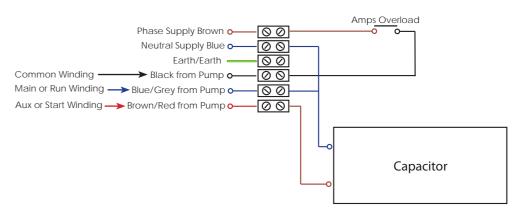

Pump Type	Code	Page
Hydraulic Information		
3" Bore pump series	GPS-T3	1
PSC Motor information (permanently split capacitor)		
Franklin 4" motors	GPS-FRK	3
Hydraulic Information		
General 4" borehole information		4
Range performance table		
4" borehole flow range 5 to 35 lpm	GPS-FP4A	6
4" borehole flow range 5 to 50 lpm	GPS-FP4B	7
4" borehole flow range 20 to 70 lpm	GPS-FP4D	8
4" borehole flow range 30 to 90 lpm	GPS-FP4E	9
4" borehole flow range 40 to 150 lpm	GPS-FP4F	10
4" borehole flow range 70 to 200 lpm	GPS-FP4H	11
4" borehole flow range 150 to 350 lpm	GPS-FP4L	12
4" Effluent pump flow range 10 to 40 lpm	GPS-EFF	13
Controller Information		
Sumodry electronic rundry protection	GPS-SUMO	16

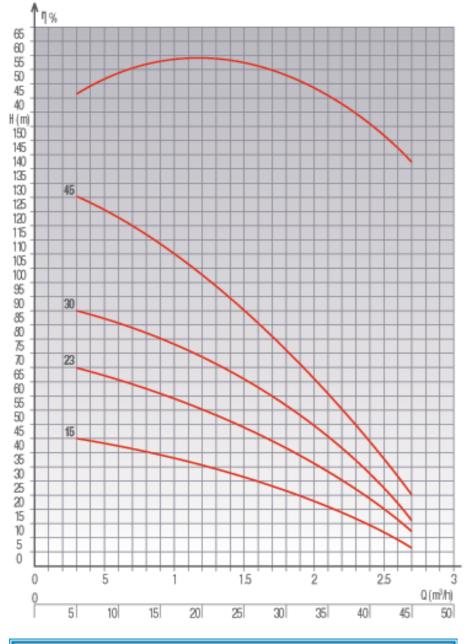
Stainless Steel discharge head Discharge non return valve 3 4 5 Stainless Steel pump case 6 Stainless Steel intake screen Stainless Steel pump coupling to motor

For bore pumps 5" and larger please contact GPS for quotation and technical data

Hydraulic Information GPS-T3 3 inch bore pump series


2


PSC Motor Information GPS-FRK 4 inch motors


GPS bore pumps 4" diameter and up use franklin motors unless specifically mentioned

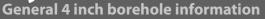
All single phase motors are of PSC permanently split capacitor (PSC) design, over the years this has been the most reliable choice in motor design, requiring an external capacitor.

Wiring Diagram for European PSC Motor

Тіро Туре	Mot Mo	ore	Q	Por	tata	- Ca	paci	ty -	Debi		Dimen e Pr Dimen and W	esi nsion /eight
Туре	Mot	eur	m 7h	0.3	0.6	0.9	1.2	1.8	2.4	2.7	Dime et Ma	
	kw	HP	L/min.	5	10	15	20	30	40	45	H/mm	kg
T3-15	0.33	0.50	E	46	42	39	36	28	15	7	580	3.3
T3-23	0.55	0.75	LENZA m HEAD m ELEVATION	70	66	61	55	43	24	13	780	4.4
T3-30	0.75	1	PREVAL TOTAL EUR D	92	86	80	73	57	33	17	1000	5.6
T3-45	1.1	1.5	HAUT	128	119	112	103	75	47	28	1380	7.6

Removable Water-Bloc Lead Assembly

Biac Starting Switch (2-wire only)


Water Lubrication

Stainless Steel **Exterior Construction**

Self-aligning Kingsbury-Type **Thrust Bearing**

Hydraulic Information

Hydraulic Information GPS-FP4 series performance table

The GPS 4" bore pump is made of solid construction with cast 304 stainless steel discharge housing and the pump to motor coupling.

This unique impeller/diffuser design has been patented and uses floating impellers that have an extremely low axial thrust onto the submersible motor. The addition of controlled clearances within the pump means the GPS-FP4 series pumps are suitable to handle a higher percentage of sand than other bore pumps.

The new technical polymers employed in manufacturing also allow the pump to run completely dry for a period of time. In fact the GPS-FP4 series pumps can run-dry for up to 6 hours with minimal performance loss.

Note - although the pump end has run dry capability the motors require water flow over them for cooling.

Applications

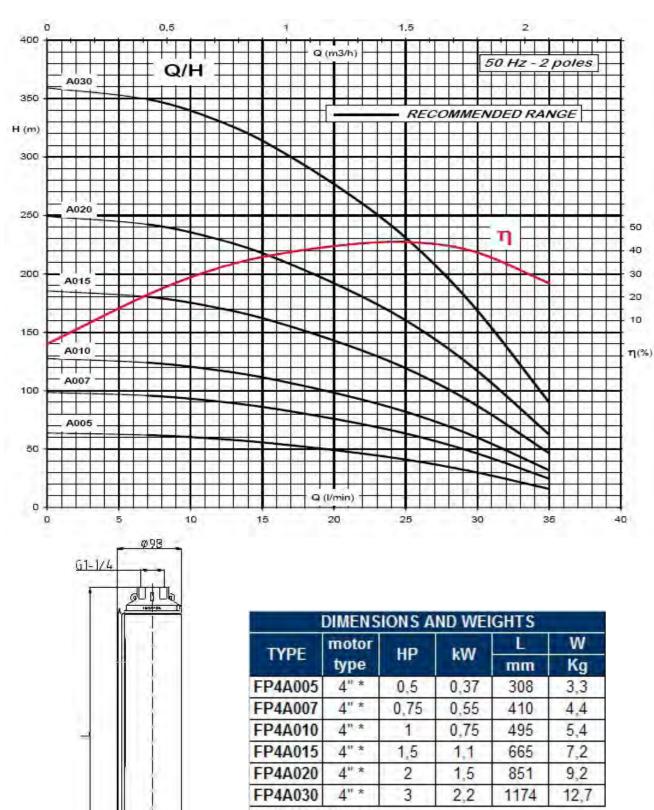
- Domestic and industrial water supply.
- Farm water
- Fire-fighting systems.
- Pressurizing water system.
- Shower and running irrigation

Materials

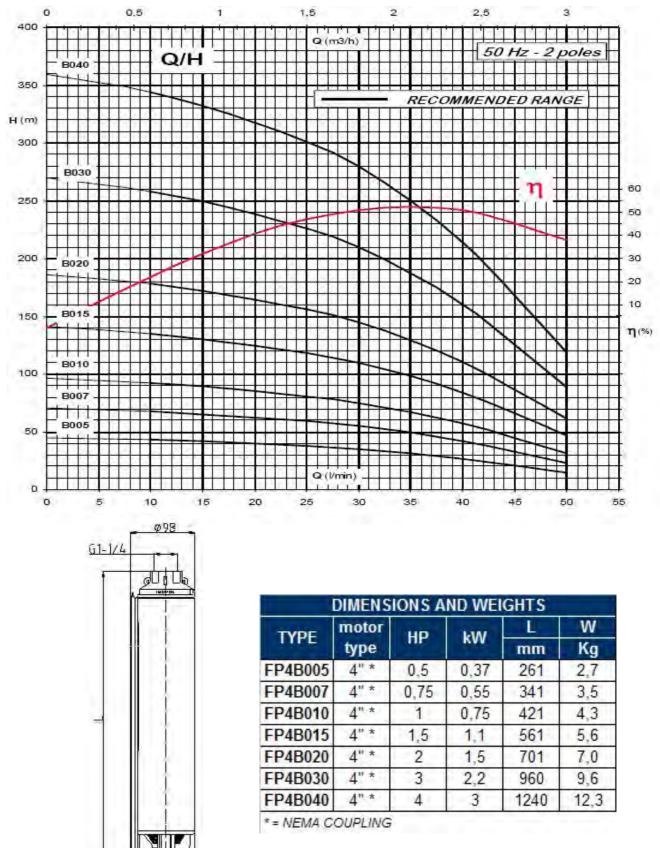
- AISI 304 stainless steel for top and bottom.
- AISI 304 stainless steel for shaft.
- AISI 316L/304 stainless steel for coupling.
- AISI 304 stainless steel for external jacket, diffuser casing, screen and cable guard.
- Impellers, diffusers and bushes are in PA66 fiberglass reinforced.

Operating data

- capacity up to 21 m3/h
- head up to 360 m
- power up to 7,5 kW •
- max. water temperature 35°C ٠
- max. sand content: 185 g/m3
- max. starts per hour: 15
- min. recommended head of water above pump suction: 1 m


50 Hz 2 p	oles	Q (mc/h)	0	0,3	0,6	1,2	1,8	2,1	2,4	3,0	3,6	4,2	4,8	5,4	6	7,8	9	12	13,5	15	18	21
TYPE	HP	Q (I/min)	0	5	10	20	30	35	40	50	60	70	80	90	100	130	150	200	225	250	300	350
FP4A005	0,5		64	63	60	49	30	16						-	-					·	122.20	11201
FP4A007	0,7		99	97	93	76	46	25				-			-	-				1		
FP4A010	1		128	125	121	98	59	32												11.00		· · · · ·
FP4A015	1,5		185	182	175	143	86	47				-		-		1.00				h. art		1
FP4A020	2		249	244	236	192	116	63			1.1										1	
FP4A030	3	1	359	352	340	277	168	90	-			-								1-51		
FP4B005	0,5	· · · · · · · · · · · · · · · · · · ·	45	44	43	40	35	31	27	15					-	1.1				10.00	1-5	
FP4B007	0,7		71	70	68	62	55	49	42	23	- 1										-	
FP4B010	1		96	95	92	85	75	66	57	32										1		
FP4B015	1,5		141	139	135	125	110	97	84	47		(12.00	1.0.0	
FP4B020	2		186	184	178	164	145	128	111	61						1.1		1.1		1	1.00	1
FP4B030	3		270	266	258	238	210	186	160	89										1.1		
FP4B040	4		360	355	344	318	280	248	214	119							-					
FP4D005	0,5	1	33			32	31	31	30	27	23	18	1000			17.71	-			1	1.00	
FP4D007	0,7	-	46			45	44	43	41	37	32	25										
FP4D010	1		66			64	63	61	59	54	46	35				2.1				1		
FP4D015	1,5		100			97	94	92	89	80	69	53	1000			1.1				1	11.11	1.10.0
FP4D020	2		133			129	125	122	118	107	92	70				10.0				11		1
FP4D030	3	-	192			187	181	177	171	155	133	102									11.11	
FP4D040	4		265			258	250	244	236	214	184	140										
FP4D055	5,5	1	345			335	325	317	307	278	239	182	- 11			100			1			1
FP4E005	0,5	· · · · · · · · · · · · · · · · · · ·	28			1.1	26	25	25	23	21	18	15	12								
FP4E007	0,7		41				39	38	37	35	31	27	23	17						1		
FP4E010	1		55		1-1		52	51	49	46	41	36	31	23								
FP4E015	1,5		83			$\{ (x_i,y_i) \}$	78	76	74	69	62	54	46	35		1.1					1	-
FP4E020	2	Н	110				104	102	99	92	83	72	61	47						Ĩ.		
FP4E030	3	(m)	165				156	153	148	138	124	109	92	70		1		_				1
FP4E040	4	1000	220				208	204	198	184	166	145	122	93	1	14						
FP4E055	5,5		303			1.1	286	280	272	253	228	199	168	128						1.1	1.1	
FP4F010	1		34	1.1	_	1.1		-	31	30	29	28	26	25	24	18	13		_			
FP4F015	1,5		54						50	48	46	44	42	40	38	29	20	-		11	1	
FP4F020	2		74					1.00	68	66	63	61	58	55	52	40	28	~ -10		10.07	1.1	1
FP4F030	3		107						99	96	92	88	84	80	75	58	40			1		
FP4F040	4		147						137	132	1.00		1-0-0-14-	110	103	79	55		_	1		_
FP4F055			201			2.2			186		173		the second s	a second day of the	141	108	75	-		1000		
FP4F075			268				_	-	248	-	230			1	188	and the second	100			10.000	1	
FP4F100			335	-					310	301	288	_	_	250	235		125					
FP4H015			36	1			_	_				34	33	32	31	29	27	16		1 21		_
FP4H020	2		50	-		1.1		-			-	47	46	45	44	40	37	22		3.00		_
FP4H030	3	-	71			-						68	66	65	63	58	51	32	_			
FP4H040	4		100				_			·		95	93	90	88	80	72	44		1		
FP4H055			136				-	-				129	126	123	120	110	98	60	-	1000		-
FP4H075			193	-			_	-			_	183		174	170	156	140	85				-
FP4H100	10		257	-				-				244	238	233	227	206	186	113				-
FP4L020			34				-	-	-		_	-		_		-	24	21	19	17	12	7
FP4L030	a second as from the		54	-		-	-	_	-	-	_			-	_	-	39	33	30	27	20	12
FP4L040	4		74														53	46	42	37	27	16
FP4L055			101				_										73	62	57	51	37	22
FP4L075			134	_	-	-	-	-	-	-	-	-		-		1.2	97	83	76	67	49	30
FP4L100	10		181								1.1	1.1					131	112	103	91	67	40

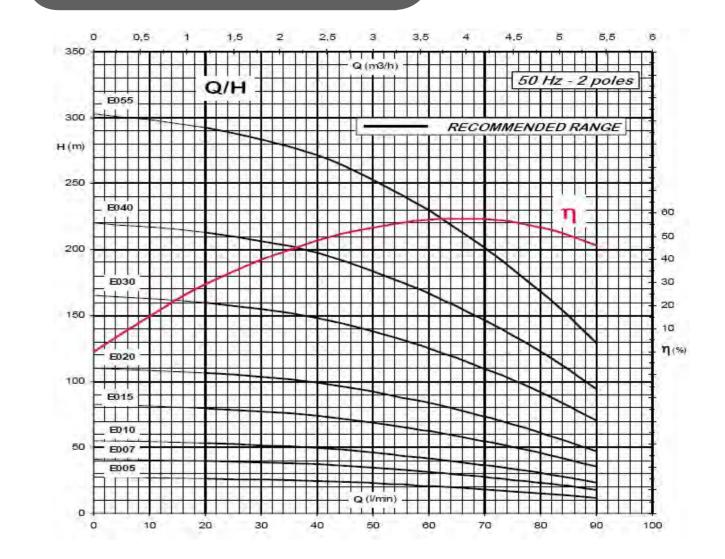
Hydraulic Information GPS-FP4A Bore Pumps series

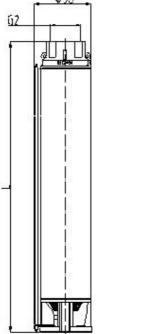


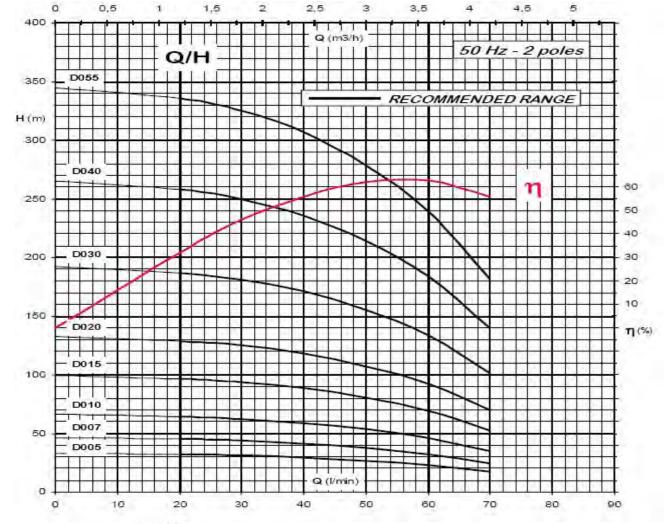
Hydraulic Information GPS-FP4B Bore Pumps series

* = NEMA COUPLING

6


notor	HP	kW		W
type	nP	KAA	mm	Kg
4" *	0,5	0,37	261	2,7
4" *	0,75	0,55	341	3,5
4" *	1	0,75	421	4,3
4" *	1,5	1,1	561	5,6
4" *	2	1,5	701	7,0
4" *	3	2,2	960	9,6
4" *	4	3	1240	12,3


Hydraulic Information GPS-FP4D Bore Pumps series



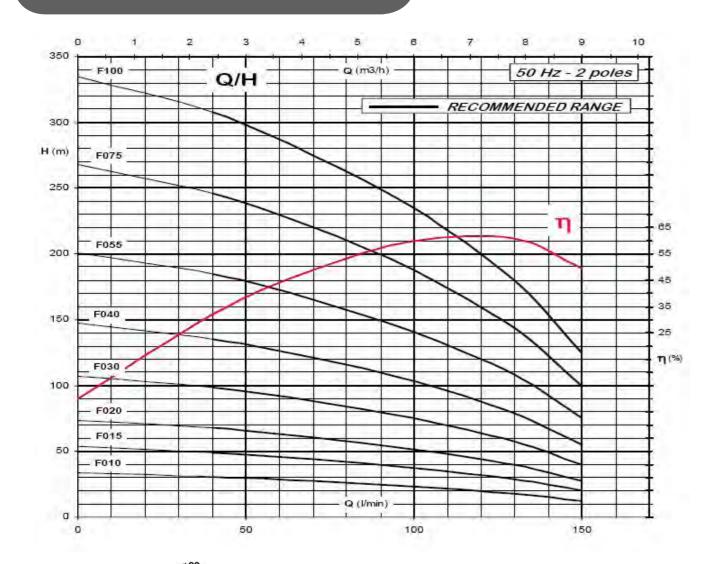
Hydraulic Information GPS-FP4E Bore Pumps series

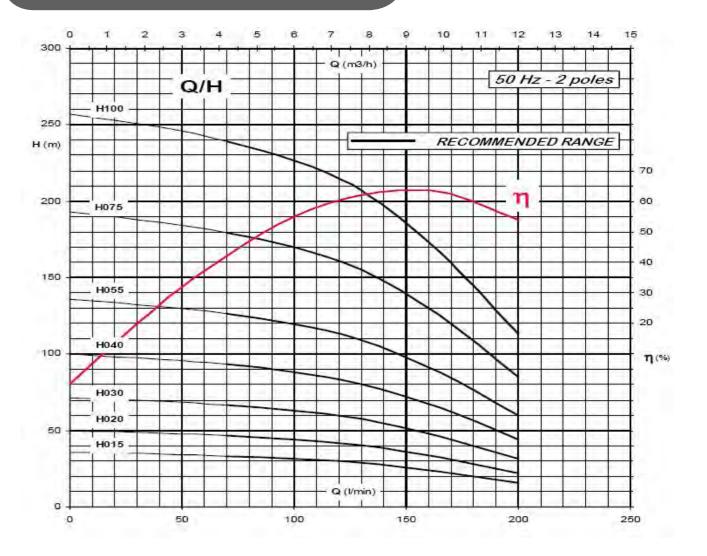
T	YP	E
FP	4E0	05
FP	4E0	07
FP	4E0	10
FP	4E0	15
FP	4E0	20
FP	4E0	30
FP	4E0	40
FP	4E0	55
* = 1	VEN	IA (

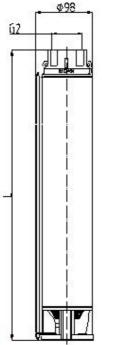
a1-1//	
_	

8

TYPE	motor	HP	kW		W
THE	type	ne	KVV	mm	Kg
P4D005	4" *	0,5	0,37	230	2,3
P4D007	4" *	0,75	0,55	270	2,7
P4D010	4" *	1	0,75	330	3,3
P4D015	4" *	1,5	1,1	430	4,2
P4D020	4" *	2	1,5	530	5,2
P4D030	4" *	3	2,2	710	7.0
P4D040	4" *	4	3	929	9,1
P4D055	4" *	5,5	4	1169	11,4


	ENSIONS AND WEIGHTS						
iotor ype	HP	kW	mm	W Kg			
4" *	0,5	0,37	210	2,0			
4" *	0,75	0,55	250	2,3			
4" *	1	0,75	290	2,7			
4" *	1,5	1,1	370	3,5			
4" *	2	1,5	450	4,3			
4" *	3	2,2	610	5,8			
4" *	4	3	750	7,4			
4" *	5,5	4	1009	9,7			


OUPLING


Hydraulic Information GPS-FP4F Bore Pumps series

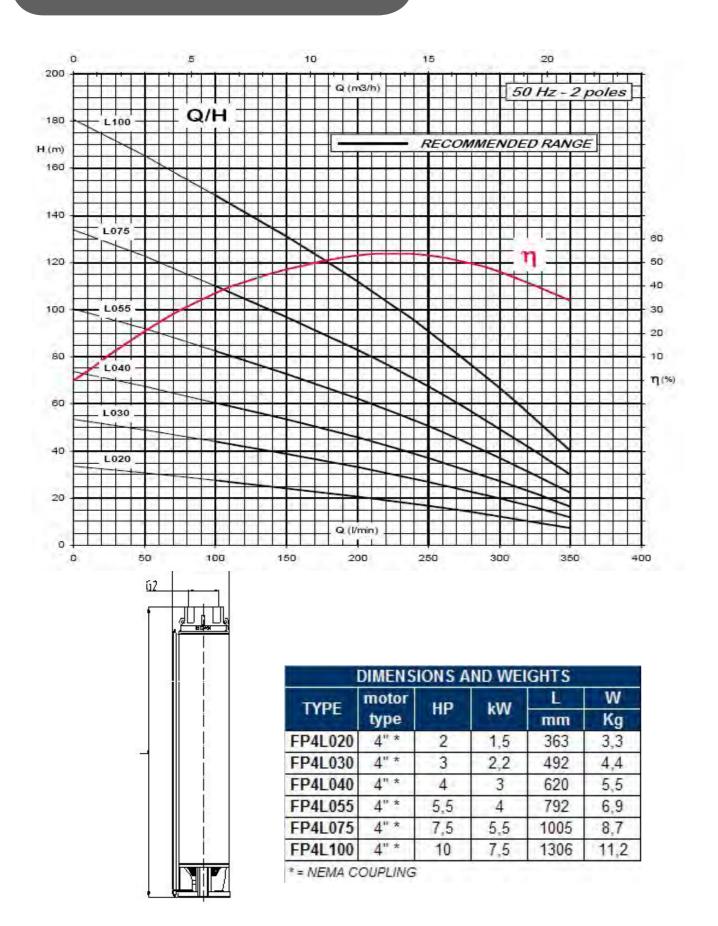
Hydraulic Information GPS-FP4H Bore Pumps series

T	PE
FP4	H015
FP4	H020
FP4	H030
FP4	H040
FP4	H055
FP4	H075
FP4	H100
* = N	EMA

al l

TYPE	motor	HP	kW		W
TIPE	type	ne	KVV	mm	Kg
FP4F010	4" *	1	0,75	323	3,2
FP4F015	4" *	1,5	1,1	438	4,2
FP4F020	4" *	2	1,5	554	5,2
FP4F030	4" *	3	2,2	746	6,8
FP4F040	4" *	4	3	976	8,8
FP4F055	4" *	5,5	4	1284	11,4
FP4F075	4" *	7,5	5,5	1669	14,7
FP4F100	4" *	10	7,5	2054	18,0

10


IMENS	MENSIONS AND WEIGHTS							
notor	HP	kW	L	W				
type	nP	KVV	mm	Kg				
4" *	1,5	1,1	341	3,2				
4" *	2	1,5	418	3,8				
4" *	3	2,2	533	4,8				
4" *	4	3	688	6,1				
4" *	5,5	4	879	7,7				
4" *	7,5	5,5	1187	10,3				
4" *	10	7,5	1533	13,2				

OUPLING

Hydraulic Information GPS-FP4L Bore Pumps series

12

Hydraulic Information GPS-Effluent series

GPS-Effluent050 and 070, have been developed in conjunction with Global Pumps specifically for effluent disposal from sewage treatment plants through raam drip line disposal fields.

The Effluent pump is designed to pump in the 10-40 litre per minute flow range to suit most drip line flow requirements, commonly pumps suited to much larger flows are used and have large horsepower requirements.

Features

This motor is fitted with a 1hp stator, and rotor but has only a 0.5hp pump end. The result is a pump that when all is well uses the power of 0.5hp pump but when a little extra torque is required the motor power is available. Also because the winding is larger than required for the pump it runs cooler and has resulting life expectancy increase.

The pump features a floating stack and as a result the pump puts almost no end thrust loading on to the bearings in the motor increasing bearing life expectancy.

Two independent rotating mechanical seals in an oil bath, this increases the life expectancy of the pump. Also as the impeller stack moves on the shaft there in not the problem of longitudinal shaft movement resulting in pressure variations on the seal faces which is an issue for pumps without floating impeller stacks.

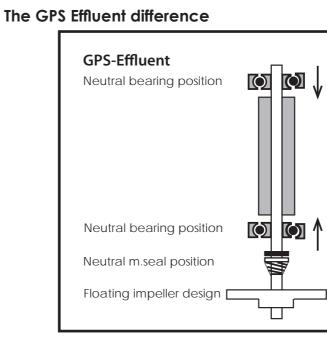
Capacitor, one of the most common things to fail with single phase pumps is the capacitor, this is the usually the result of poor or variations in power supply. As a result we have used an external capacitor that can be changed easily if necessary without disturbing the pump sealing.

Cables, are of high grade HORNF7 neoprene, flexible with a long life expectancy.

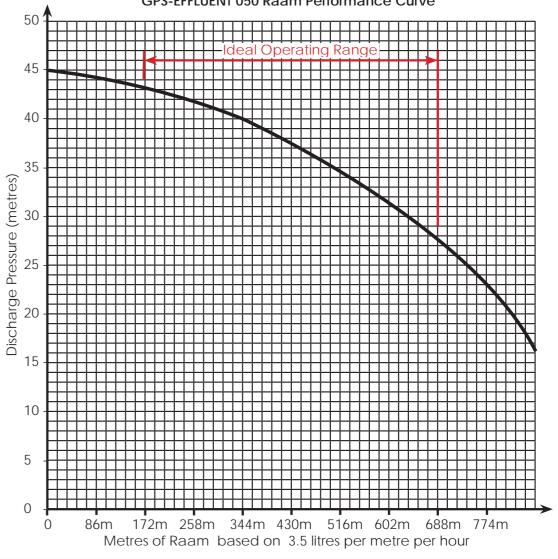
Data	Effluent 050	Effluent 070			
Maximum Pressure	45m	71m			
Maximum flowrate	50 litres per minut	te or 3m ³ per hour			
Target Pump Duty	10-40 litres per minute				
Power Available	P ₁ = 0.	75kW			
Power Absorbed	P ₂ =0.37kW	P ₂ =0.55kW			
Current FLC	3.9 amps	xxx amps			

50Hz, 2 Poles, 230 volt		Q(m ³ /hr)	0	0.3	0.6	1.2	1.8	2.1	2.4	3.0
Model	P ₂₍ Hp)	Q(lpm)	0	5	10	20	30	35	40	50
GPS-Effluent050	0.50	Head (m)	45	44	43	40	35	31	27	15
GPS-Effluent070	0.75	Head(m)	71	70	68	62	55	49	42	23


Hydraulic Information GPS-Effluent series


Hydraulic Information GPS-Effluent series

GPS-Effluent050 Construction features


- A double mechanical seal with oil chamber
- Forced motor cooling
- Patented impeller design that tansmits minimal axial thrust through to the motor
- Can pump down to 70mm water depth
- Rewindable motor
- Pump can be installed in hole 100mm diameter, large diameter well or tank

GPS-EFFLUENT 050 Raam Performance Curve

50 45 40 35 (metres) Discharge Pressure 15 10 5 0 10 20 25 30 15 35 40 45 50 Flowrate (litres per minute)

GPS-EFFLUENT 050 Performance Curve

Global Pump Solutions Ltd - Mob 021 952 585 - Ph 09 414 5416 - Fax 09 414 5418

14

Other effluent pump brands

Direction of force on shaft right hand side of pump curve

- Direction of force on shaft left hand side of pump curve M.seal is subjected to load
- variations
- Fixed Impeller design

The control panel for full protection

Controller Information

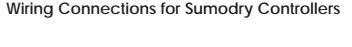
Sumodry is a control panel designed by Sumoto. Sumodry guarantee a full protection of submersible motor to prevent them from the dry running, without any use of water level probes.

Technical Features

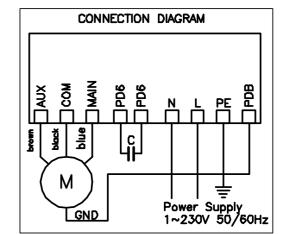
GPS-Sumodry

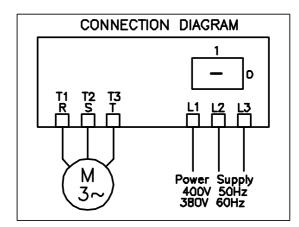
Sumodry, are available in both single and three phase, control panels are fitted with a microprocessor, designed to assure full protection to all submersible motors

- Overload protection
- Dry running protection (water level probes are NOT required)
- Protection in case of lack of one or more phases (for 3-phase motors)
- Protection in case of voltage fluctuation
- Short circuit protection
- Overvoltage protection
- 4 alert leds are present;
 - 1. Power on (green)
 - 2. Dry running (red)
 - 3. Overload (red)
 - 4. Stand-by (yellow)
- Automatic reset of dry running protection, after pre-determined periods of time
- Remote control
- Digital set up of the nominal current and power factor via dip-switch
- Designed for 230V single-phase and 400V threephase supply
- Manual reset
- Self learning feature, in order to facilitate the current and power factor setting


Range of Application

Sumo dry controllers are avilable for single phase Motors upto 15 amps and three phase motors upto 19 amps


GPS-SumodryM1	Single phase to 3.0hp
GPS-SumodryT	Three phase to 7.5 hp
ses for the sumo dry c	controllers need to be specif


GPS-SumodryM Single phase to 2.0hp

Fuses for the sumo dry controllers need to be specified at time of purchase based off the full load motor current

GPS-Sumodry

GLOBAL PUMP SC

GLOBAL PUMP SOLUTIONS

GLOBAL PUMP SOLUTIONS